El artículo aborda la importancia de las transiciones entre sistemas de contención de vehículos, destacando su papel fundamental en la continuidad de la seguridad vial. Las transiciones no son simples uniones, sino sistemas de contención en sí mismos que deben cumplir con estrictos requisitos para asegurar la protección de los usuarios. Se exploran los avances normativos recientes, como la EN 1317-10:2024 y la Nota Técnica 01/2024, que proporcionan un marco más claro para la evaluación de las transiciones, y se presentan metodologías de ensayo, incluyendo pruebas a escala real, simulaciones numéricas y reglas de diseño. Asimismo, se discuten los desafíos prácticos y las soluciones innovadoras para integrar de manera efectiva las transiciones en los proyectos viales, subrayando la necesidad de un enfoque colaborativo entre fabricantes, ingenieros y autoridades para garantizar los más altos estándares de seguridad vial.

Introducción

Las transiciones entre sistemas de contención de vehículos son elementos fundamentales que permiten la conexión segura y efectiva entre diferentes tipos de barreras y/o pretiles, garantizando una continuidad en los niveles de contención y, por tanto, la seguridad vial por salidas de vía. A lo largo de la historia, el desarrollo de estas transiciones ha evolucionado desde soluciones improvisadas hasta sistemas altamente estudiados y regulados.

Con la aparición de requisitos específicos en normativas nacionales e internacionales como la MASH (Manual for Assessing Safety Hardware) (I) en Estados Unidos o la EN 1317 (II) en Europa, se establecieron métodos de ensayo para evaluar transiciones. Las pruebas comenzaron a incluir escenarios específicos para vehículos ligeros y pesados, considerando cómo las diferencias en rigidez y altura podían influir en los impactos. Con ello los fabricantes comenzaron a colaborar con laboratorios de ensayo para desarrollar transiciones certificadas que garantizaran la compatibilidad entre sistemas específicos. Hoy en día las transiciones son elementos esenciales como sistemas de contención de vehículos, y los esfuerzos están centrados en establecer criterios de ensayo y diseño novedosos con los que resolver la complejidad que tiene adecuar cualquier escenario que se pueda dar en la carretera, apostando por soluciones viables y rigurosas, como por ejemplo la combinación de pruebas virtuales y ensayos físicos para optimizar el diseño de las transiciones y reducir costos.

Las transiciones entre sistemas de contención de vehículos son elementos críticos que permiten asegurar una transición gradual de rigideces, garantizando la continuidad en el nivel de seguridad al pasar de un tipo de barrera y/o pretil a otro.

A menudo se subestima la importancia de las transiciones, considerándolas simples uniones entre barreras, pero la realidad es que cada transición debe funcionar como un sistema de contención en sí mismo, con propiedades definidas de comportamiento ante impactos.

Las transiciones no solo permiten el cambio entre diferentes tipos de sistemas de contención, sino que también aseguran que este cambio se realice de manera controlada y segura, minimizando el riesgo de accidentes y proporcionando una protección continua para los usuarios de la vía. La ausencia de una transición adecuada podría generar puntos potencialmente peligrosos, donde la capacidad de contención del sistema se vea comprometida, lo cual podría resultar en consecuencias graves en caso de colisión. Es por esto que las transiciones deben ser diseñadas y evaluadas con el mismo rigor que el sistema de contención en sí mismo.

Este artículo tiene como objetivo clarificar el concepto de transición y presentar los avances más recientes en su evaluación y certificación, así como mostrar ejemplos prácticos de transiciones implementadas y evaluadas siguiendo las directrices actuales. Además, se abordarán las metodologías de ensayo y simulación que se utilizan para verificar el rendimiento de las transiciones, destacando la importancia de una correcta implementación de estos sistemas en la infraestructura vial. También se analizarán los desafíos que enfrentan estas transiciones en la práctica y las soluciones que se han desarrollado para superarlos, con un enfoque en la normativa vigente y en los casos de éxito que se han observado en proyectos recientes. Asimismo, se destacará la necesidad de una colaboración más estrecha entre fabricantes, ingenieros y administraciones públicas para garantizar que las transiciones cumplan con los más altos estándares de seguridad y eficiencia.


Contexto normativo

En Europa, la normativa EN 1317(II) regula los sistemas de contención de vehículos, incluidas las transiciones, que están cubiertas por la parte 4. Sin embargo, hasta la fecha, esta parte nunca ha sido armonizada para obtener un marcado CE, como ocurre con los pretiles, barreras o atenuadores de impacto.

En enero de 2024, la parte 4 de la norma EN 1317(II) fue derogada y reemplazada por tres documentos:

  • CEN/TR 1317-10:2024(III): Informe técnico que establece metodologías para evaluar transiciones entre sistemas de contención de vehículos.
  • CEN/TS 1317-7:2024(IV): Especificación técnica que aborda la caracterización de las prestaciones y métodos de ensayo para terminales de barreras de seguridad.
  • CEN/TS 1317-9:2024(V): Especificación técnica que detalla los ensayos de impacto y métodos de ensayo para tramos de barrera desmontables.

Estos documentos proporcionan directrices actualizadas para la evaluación y diseño de transiciones, terminales y tramos de barrera desmontables como sistemas de contención de vehículos. Sin embargo, no son documentos armonizados por la parte 5, por lo que no es posible la obtención del marcado CE tras evaluarlos de acuerdo a estos documentos.

La parte 10 de la EN 1317(II) es un informe técnico que describe diferentes enfoques para la evaluación de las transiciones entre sistemas de contención. Estos enfoques incluyen ensayos a escala real, simulaciones numéricas, y simples reglas de diseño para situaciones menos complejas.

Imagen 1. Resumen de los métodos de evaluación del informe técnico CEN/TR 1317-10:2024.

Cada administración europea tiene la libertad de decidir qué metodología adoptar, lo que ha llevado a diferencias significativas en la regulación y aceptación de transiciones en distintos países.

En lo que respecta al ámbito español, hasta la aparición de la Nota técnica 01/2024(VII) sobre documentación requerida a los sistemas de contención de vehículos, en la que se aclara que las transiciones están exentas de marcado CE y se evalúan con alguno de los métodos recogidos en el CEN/TR 1317-10:2024(III), la Orden Circular 35/2014(VIII) del Ministerio de Transportes y Movilidad Sostenible establecía que se emplearán transiciones de forma semejante a las empleadas en el ensayo en el que se obtuvo el marcado CE. Sin embargo, como el marcado CE es de las barreras o los pretiles, surge una confusión porque no se define con claridad cómo deben evaluarse las transiciones. En la práctica, los fabricantes emplean detalles constructivos que se colocan en los extremos de las barreras y pretiles en el ensayo. Estos elementos de finalización no se evalúan formalmente, pero luego se utilizan como soluciones para la transición. Éste es un defecto de la normativa actual, ya que no aclara que una transición es un sistema de contención en sí mismo que debe ser evaluado de forma independiente y combinando los sistemas que se desea unir.

Imagen 2. A la izquierda el detalle constructivo habitual en ensayos tipificados en la UNE-EN 1317-2:2011(IX) en laboratorio acreditado de un sistema de contención de vehículos de nivel H2. A la derecha el mismo sistema instalado en obra siguiendo el detalle constructivo.

Otro ejemplo de guía que regula transiciones es la normativa francesa NF058(IX). Esta norma establece un método para evaluar las transiciones entre sistemas de contención de vehículos basándose en una combinación de ensayos a escala real y simulaciones numéricas para validar su rendimiento. En la NF058(IX) se clasifican las transiciones en diferentes clases según las características de los sistemas a conectar, sus parámetros de deformación y la existencia de piezas específicas de transición. Dependiendo de la complejidad de la transición, se pueden aplicar verificaciones documentales, simulaciones numéricas o una combinación de ensayos físicos y simulaciones para garantizar la seguridad y la continuidad de la contención entre los sistemas conectados, de tal forma que se plantea una metodología que sigue parte del ámbito regulatorio del CEN/TR 1317-10:2024(III).


Imagen 3. Resumen de los métodos de evaluación de la norma NF058 (IX).

Ampliando el ámbito internacional, la norma estadounidense MASH(II) proporciona directrices claras para la evaluación de transiciones entre sistemas de contención de vehículos. Se enfoca en asegurar que las transiciones ofrezcan un rendimiento adecuado mediante pruebas a escala real y simulaciones, garantizando así una transición segura y efectiva al pasar de un tipo de barrera a otro.

Cabe destacar también que, en regulaciones de algunos países sudamericanos como Colombia o Paraguay, se han adoptado normativas basadas en estándares internacionales, como la EN 1317(II) y MASH(I), con adaptaciones específicas a cada país. Estas regulaciones también establecen un marco claro para la evaluación de las transiciones, considerando las características y necesidades propias de cada territorio.

Un aspecto relevante en el desarrollo o evaluación de transiciones es el empleo de la norma UNE-EN 16303:2021(VI). Esta norma tiene como propósito establecer los requisitos y metodologías para la validación y verificación de modelos numéricos que se utilizan en simulaciones de sistemas de contención de vehículos. Esto incluye la evaluación de modificación de barreras, pretiles y otros sistemas como las transiciones, garantizando que los modelos sean representativos de la realidad para asegurar la fiabilidad de los resultados de las simulaciones.

En el caso de evaluación de transiciones, la parte 10 de la EN 1317(II) contempla el empleo de simulaciones reguladas por la norma UNE-EN 16303:2021(VI) para las evaluaciones de transiciones Tipo B, esta norma es especialmente útil porque proporciona un marco estructurado para validar modelos numéricos que permiten simular el comportamiento de estos elementos. Las transiciones requieren una evaluación detallada para garantizar que la interacción entre sistemas de contención sea segura y eficaz, y la UNE-EN 16303:2021(VI) permite que estas simulaciones sean una representación fiel de las pruebas físicas, asegurando que se cumplan las expectativas de seguridad antes de la implementación en campo. Esto es crucial para optimizar el diseño y reducir la limitación que suponen los ensayos a escala real.

Analizando el contexto normativo, se pone de manifiesto que, en las distintas normativas que regulan el uso de sistemas de contención de vehículos, las transiciones son un elemento fundamental. En los últimos años, se han desarrollado soluciones innovadoras para su evaluación, con un enfoque en mejorar la seguridad vial y garantizar la continuidad de las prestaciones entre diferentes tipos de sistemas de contención. Se espera que, en breve espacio de tiempo, la administración española presente propuestas normativas actualizadas que incluyan las transiciones.


Concepto de transición

El primer punto clave reside en comprender que una transición no es simplemente una unión entre dos barreras. Una transición es un sistema de contención de vehículos en sí mismo, es decir, se puede considerar como otra barrera y/o pretil que tiene caracterizados los parámetros habituales que se obtienen tras superar los ensayos de la UNE-EN 1317-2:2011(X) como son el índice de severidad, deflexión dinámica, intrusión del vehículo, ancho de trabajo, longitud del sistema…

Es por esto que la norma debe establecer métodos específicos para que estos sistemas puedan ser evaluados de forma independiente a las barreras o pretiles que conectan, de tal forma que sean caracterizados con estos parámetros de manera análoga a aquellos.

Una forma de entender que la transición tiene una identidad propia es observar un ejemplo de transición. En la imagen 4 se puede ver una transición entre pretil metálico y barrera de hormigón. Si se analiza con detalle, el pretil metálico sigue un patrón constante de separación entre postes, pero a la hora de acercarse a la barrera rígida de hormigón, modifica este patrón porque se busca rigidizarse al encontrarse con un sistema que no se deforma al recibir el impacto de un vehículo. De este modo se consigue una transición adecuada de rigideces. Además de ello, se emplean piezas especiales para evitar que las diferencias geométricas entre los dos sistemas presenten problemas a la hora de interactuar con los vehículos. Se puede ver que, por ejemplo, la barrera de hormigón presenta unas escotaduras especiales para acoplarse del mejor modo posible a la unión con el pretil metálico. Pues bien, todo este tramo de barreras que no mantienen su morfología habitual son parte de lo que llamamos transición, por lo que en este ejemplo es fácil entender que físicamente la transición tiene una longitud no despreciable.

Imagen 4. Ensayo a escala real de transición entre barrera rígida de hormigón y pretil metálico evaluado según la norma NF058(VIII).


Por otro lado, hay que distinguir entre transiciones entre barreras y transiciones entre pretiles y barreras, porque hay una diferencia fundamental debido al elemento de sustentación. El primer caso es más simple de resolver, ya que el elemento de sustentación no cambia entre los dos sistemas, mientras que en el segundo caso sí cambia, pasando de estructura a terreno, lo cual complica la forma de encajarlas y requiere un diseño más detallado y específico.

Imagen 5. Ejemplo de transición entre barreras flexibles tipo bionda y trionda evaluada según la norma NF058(VIII).

Otro punto a resaltar es vencer la falsa creencia de que una transición es adecuada simplemente haciendo saltos graduales de niveles de contención, de uno en uno. La realidad es que la transición tiene un nivel de contención concreto, que normalmente será el de uno de los dos sistemas que conecta. El otro sistema que se une puede tener un nivel de contención que salte uno, o incluso dos o más niveles, sin que esto comprometa la seguridad, siempre que la transición haya sido correctamente diseñada y evaluada.

El concepto de «transición lógica de rigideces» es clave en este contexto. Este principio busca que, al pasar de una barrera a otra, la rigidez del sistema no cambie abruptamente, evitando así efectos adversos como el «efecto pilar», que podría aumentar el riesgo de daños en los ocupantes del vehículo en caso de impacto. De esta manera, las transiciones se convierten en un componente crítico dentro del diseño integral de los sistemas de contención, ya que permiten mantener el nivel de contención óptimo a lo largo de toda la infraestructura vial. En muchos casos, las transiciones también deben ser evaluadas bajo diferentes escenarios de impacto para garantizar que su desempeño sea adecuado en diversas condiciones, lo cual añade complejidad a su diseño y evaluación. Por tanto, no se puede subestimar la importancia de una correcta evaluación y certificación de las transiciones, ya que de ello depende en gran medida la seguridad de los usuarios de la vía.


Métodos de evaluación de transiciones

Como se ha comentado en el contexto normativo, el informe técnico de la parte 10 de la EN 1317(II) presenta tres metodologías principales para la evaluación de las transiciones:

  • Ensayos a Escala Real (Tipo A): Este método consiste en realizar pruebas de impacto utilizando vehículos reales para evaluar el comportamiento de las transiciones bajo condiciones controladas. Estos ensayos permiten obtener una evaluación precisa del rendimiento de la transición, y son especialmente útiles para validar la resistencia y efectividad de las transiciones en situaciones de impacto reales. Aunque son costosos, representan la forma más fiable de garantizar la seguridad de los sistemas.
  • Simulaciones Numéricas (Tipo B): Las simulaciones numéricas se utilizan como una herramienta flexible y económica para analizar el comportamiento de las transiciones. En este enfoque, se emplea la norma EN 16303(VI) para validar los modelos numéricos utilizados, asegurando que las simulaciones sean una representación fiel de las pruebas físicas. Este método es especialmente útil para optimizar el diseño antes de realizar pruebas físicas, ya que permite evaluar múltiples escenarios y ajustar parámetros sin necesidad de ensayos físicos costosos. Las simulaciones también son fundamentales para evaluar transiciones complejas, como aquellas que involucran cambios en el elemento de sustentación (de estructura a terreno).
  • Reglas de Diseño Simples (Tipo C): En situaciones donde las barreras a conectar tienen una morfología y nivel de rigidez similar, se pueden aplicar reglas de diseño simples para evaluar la transición. Este método es menos riguroso que los ensayos a escala real o las simulaciones numéricas, pero puede ser adecuado para transiciones sencillas donde el riesgo es menor y la continuidad en la rigidez de los sistemas es evidente. Las reglas de diseño permiten una evaluación más rápida y menos costosa, aunque no siempre proporcionan el mismo nivel de certeza en cuanto a la seguridad del sistema.

Estos métodos proporcionan un marco integral para la evaluación de transiciones, permitiendo a las administraciones el enfoque más adecuado según la complejidad de la transición y las condiciones específicas de la infraestructura vial.

En el caso de la administración española, la reciente Nota Técnica 01/2024(VII) especifica que los fabricantes deben proporcionar certificación de las transiciones conforme a la parte 10 de la norma EN 1317(II). Sin embargo, la administración no se ha posicionado sobre cuál de los métodos de evaluación debe utilizarse en función de las características de las barreras y/o pretiles que se conectan, o según las condiciones específicas de la vía. En la propia nota se aclara que se está trabajando en una revisión de la OC 35/2014(VII) para abordar este aspecto y proporcionar una guía más clara sobre los criterios a aplicar para la evaluación de transiciones.

La Administración Francesa ha sido una de las primeras en adoptar una normativa propia para la evaluación de transiciones, conocida como NF058(IX). Esta normativa clasifica las transiciones según las características de los elementos que se desean conectar, proporcionando un marco detallado que determina los ensayos necesarios para obtener la certificación, tal y como se ilustra en la imagen 3 de este artículo.

El procedimiento de evaluación se basa en determinar el grado de diferencia morfológica y de rigidez entre los sistemas a conectar. En función del nivel de disparidad, se exige una evaluación que puede realizarse mediante ensayos a escala real, simulaciones numéricas, o reglas de diseño simples.

Antes de proceder al diseño detallado de la transición, los fabricantes deben plantear un boceto preliminar que define cómo se llevará a cabo la conexión, incluyendo la longitud aproximada de la transición. A partir de esta longitud y las diferencias morfológicas y mecánicas identificadas, un organismo notificado es el encargado de especificar los puntos de impacto, el tipo de vehículos que se utilizarán, y si se requiere realizar ensayos a escala real o evaluaciones mediante simulaciones, de acuerdo con la norma EN 16303(VI).

Imagen 6. Ejemplo de evaluación de transiciones mediante simulaciones según la norma NF058(VIII).

El siguiente paso implica el desarrollo detallado de la transición por parte de los fabricantes. Una vez consideran que el diseño es satisfactorio, deben presentar toda la documentación del proceso, que incluye informes de ensayos, caracterización de materiales, planos de detalle, manuales de instalación, entre otros, de manera similar a lo que se requiere para la certificación de una barrera o pretil según la normativa europea. En caso de que la transición se haya validado mediante simulaciones, el organismo notificado podrá contratar, como sucede en Francia, a un laboratorio especializado como asistencia técnica para realizar una evaluación rigurosa del desarrollo con el fin de emitir un veredicto sobre la validez de la transición.

El método más sencillo para la evaluación de transiciones es la aplicación de reglas de diseño simples. Este enfoque se aplica cuando los sistemas a conectar, ya sean barreras o pretiles, presentan características morfológicas similares y un comportamiento mecánico análogo. En estos casos, se justifica la conexión mediante un plano de detalle, ya que la semejanza entre ambos sistemas asegura la continuidad en la contención sin necesidad de evaluaciones adicionales complejas. Este camino es, sin duda, el más directo y menos costoso, y se fundamenta en la compatibilidad natural de los dos sistemas involucrados.


La situación de la administración española: Certificación y regulación del uso de transiciones

La Orden Circular 35/2014(VII) del Ministerio de Transportes y Movilidad Sostenible establece criterios para la aplicación de sistemas de contención de vehículos en la red de carreteras del Estado. En cuanto a las transiciones, la OC 35/2014(VII) menciona que estas deben emplearse de forma semejante a las soluciones utilizadas en los sistemas con marcado CE. No obstante, este enfoque presenta limitaciones importantes, ya que el marcado CE solo se aplica a barreras y pretiles, y no a las transiciones en sí mismas. En consecuencia, la normativa actual carece de claridad sobre cómo evaluar de manera adecuada una transición, lo que ha llevado a la adopción de prácticas constructivas que no garantizan siempre la continuidad en los niveles de contención.

Como se ha indicado anteriormente, este vacío normativo implica que los fabricantes emplean detalles constructivos en los extremos de las barreras y pretiles para unir los sistemas, sin que estos detalles sean sometidos a ensayos o simulaciones específicas. Como resultado, se terminan instalando uniones que no han sido evaluadas de forma rigurosa, comprometiendo potencialmente la seguridad vial. En definitiva, la OC 35/2014(VII) no define que una transición debe ser tratada como un sistema de contención independiente y evaluado bajo sus propias condiciones específicas.

La reciente Nota Técnica 01/2024 aclara que las transiciones están exentas de marcado CE, pero que deben ser evaluadas conforme a alguno de los métodos establecidos en el CEN/TR 1317-10:2024(III), ya sea mediante ensayos a escala real, simulaciones numéricas o reglas de diseño. Este es un paso importante, ya que proporciona un marco más definido para la evaluación de transiciones, reconociéndolas como un sistema con identidad propia que debe ser evaluado de forma rigurosa.

Sin embargo, la Nota Técnica también señala que la administración aún no se ha posicionado sobre cuál de los métodos de evaluación debe utilizarse en cada caso, dependiendo de las características de las barreras y pretiles a conectar o de las condiciones particulares de la vía.

Finalmente, la nota también indica que se está trabajando en una revisión de la OC 35/2014(VII) para abordar estos aspectos y proporcionar una guía más detallada, lo cual es una oportunidad para mejorar la seguridad de las transiciones.

Llegados a este punto, es esencial que las transiciones sean reconocidas como sistemas de contención independientes que requieren su propia certificación, y que se establezcan directrices claras sobre cuándo se debe utilizar cada método de evaluación.

Un referente adecuado sería adoptar una metodología similar a la aplicada por la administración francesa. Actualmente, el listado de transiciones certificadas bajo este marco normativo incluye un total de 604 transiciones, de las cuales 133 corresponden a fabricantes españoles. Implementar la metodología francesa, que esencialmente es una aplicación del informe técnico europeo CEN/TR 1317-10:2024(III), permitiría disponer automáticamente de estas 133 transiciones certificadas dentro del ámbito de la administración española, otorgando una ventaja competitiva significativa al sector nacional.

Este enfoque ya ha sido seguido por otras administraciones europeas, como la belga, que reconoce las transiciones con marcado NF como válidas en su territorio, incluso si su normativa interna no es idéntica a la francesa. Esto se debe a la incorporación de ciertos matices propios que permiten adaptar las soluciones a las características específicas de cada país, sin perder la coherencia técnica ni comprometer la seguridad vial. La adopción de esta estrategia facilitaría una mayor homologación y estandarización de las transiciones, la revisión de la OC 35/2014(VII) debe ser una oportunidad para establecer un marco normativo robusto que permita una evaluación y certificación de las transiciones de manera coherente y efectiva, asegurando la continuidad en la contención y protegiendo así la seguridad de los usuarios de las carreteras.


Conclusiones

Las transiciones entre sistemas de contención de vehículos son fundamentales para garantizar la continuidad en la seguridad vial, especialmente en puntos críticos como los cambios de rigidez entre diferentes estructuras. A lo largo del artículo, se ha resaltado la importancia de tratar las transiciones no como simples uniones, sino como sistemas de contención independientes que deben cumplir con requisitos específicos para asegurar un nivel de protección adecuado.

El marco normativo ha mostrado avances significativos con la introducción de la EN 1317-10:2024(III) y la Nota Técnica 01/2024(VII). Estas guías ofrecen mayor claridad en los métodos de evaluación de las transiciones, reconociendo la necesidad de un enfoque riguroso y adaptado a las características de cada situación. Sin embargo, la falta de directrices concretas en algunos aspectos, como el método de evaluación más adecuado según las condiciones de la vía, aún presenta un desafío.

El ejemplo de la carretera CV-611 demuestra la complejidad de diseñar transiciones que mantengan la seguridad al pasar de un elemento estructural a otro con diferentes condiciones de soporte. La correcta planificación y la elección de un nivel de contención adecuado son esenciales para evitar reducciones en la seguridad y para lograr una integración eficiente de los distintos elementos del sistema de contención.

Es necesario un enfoque colaborativo entre fabricantes, ingenieros y autoridades reguladoras para desarrollar soluciones innovadoras y efectivas. La adopción de metodologías como la de la administración francesa y la armonización de criterios de evaluación a nivel nacional pueden contribuir significativamente a mejorar la seguridad vial y facilitar la homologación de las transiciones en diferentes contextos.

En resumen, para mejorar la seguridad en las infraestructuras viales, es crucial no solo contar con transiciones adecuadamente diseñadas y certificadas, sino también implementar normativas claras que permitan una aplicación coherente y segura en cada proyecto. La colaboración y la innovación son claves para enfrentar los desafíos actuales y garantizar una seguridad vial continua y efectiva para todos los usuarios de la carretera.